Можно ли сложить лист более 7 раз? - Мастерок.жж.рф
?

Log in

No account? Create an account

Previous Entry | Next Entry



Уже давно ходит такая распространённая теория, что ни один лист бумаги нельзя сложить вдвое больше семи (по некоторым данным — восьми) раз. Источник этого утверждения уже сложно найти. Между тем текущий рекорд складывания – 12 раз. И что удивительнее, принадлежит он девушке, математически обосновавшей эту «загадку бумажного листа».

Разумеется, мы говорим о бумаге реальной, имеющей конечную, а не нулевую, толщину. Если складывать её аккуратно и до конца, исключая разрывы (это очень важно), то «отказ» складываться вдвое обнаруживается, обычно, уже после шестого раза. Реже – седьмого.

Попробуйте проделать это сами с листком из тетради.

И, как ни странно, от размеров листа и его толщины ограничение мало зависит. То есть, просто так взять тонкий лист побольше, да и сложить его вдвое, раз допустим 30 или хотя бы 15 – не получается, как ни бейся.

В популярных подборках, типа «А знаете ли вы что…» или «Удивительное рядом», факт сей — что вот больше именно 8 раз сложить бумагу нельзя — до сих пор можно найти очень во многих местах, в Сети и вне. Но факт ли это?

Давайте рассуждать. Каждое сложение удваивает толщину кипы. Если толщину бумаги принять равной 0,1 миллиметра (размер листа мы сейчас не рассматриваем), то сложение её вдвое «всего» 51 раз даст толщину сложенной пачки в 226 миллионов километров. Что уже очевидный абсурд.




Мировая рекордсменка Бритни Гэлливан и бумажная лента, сложенная вдвое (в одном направлении) 11 раз


Кажется, тут-то мы начинаем понимать, откуда берётся известное многим ограничение на 7 или 8 раз (ещё раз – бумага у нас реальная, она не тянется до бесконечности и не рвётся, а порвётся – это уже не складывание). И всё же…

В 2001 году одна американская школьница решила вплотную заняться проблемой двойного складывания, а получилось из этого целое научное исследование, да ещё и мировой рекорд.

Собственно, началось всё с вызова, брошенного педагогом ученикам: «А вот попробуйте сложить хоть что-нибудь пополам 12 раз!». Мол, убедитесь, что это из разряда совершенно невозможного.

Бритни Гэлливан (Britney Gallivan) (заметим, сейчас она уже студентка) поначалу отреагировала как Алиса Льюиса Кэрролла: «Бесполезно и пробовать». Но ведь говорила Алисе Королева: «Осмелюсь сказать, что у вас не было большой практики».

Вот Гэлливан и занялась практикой. Порядком намучившись с разными предметами, она сложила-таки лист золотой фольги вдвое 12 раз, чем посрамила своего преподавателя.



Пример складывания листа вдвое четыре раза. Пунктир – предыдущее положение трёхкратного сложения. Буквы показывают, что точки на поверхности листа смещаются (то есть, листы скользят друг относительно друга), и занимают в результате не то положение, как может показаться при беглом взгляде


На этом девушка не успокоилась. В декабре 2001 года она создала математическую теорию (ну, или математическое обоснование) процесса двойного складывания, а в январе 2002 года проделала 12-кратное складывание пополам с бумагой, используя ряд правил и несколько направлений складывания (для любителей математики, несколько подробнее — тут).

Бритни заметила, что к этой проблеме ранее уже обращались математики, но правильного и проверенного практикой решения задачи ещё никто не предоставлял.

Гэлливан стала первым человеком, который правильно понял и обосновал причину ограничений на сложение. Она изучила накапливающиеся при складывании реального листа эффекты и «потерю» бумаги (да и любого иного материала) на сам сгиб. Она получила уравнения для предела складывания, для любых исходных параметров листа. Вот они.




Первое уравнение относится к складыванию полосы только в одном направлении. L — минимально возможная длина материала, t – толщина листа, и n — число выполненных сгибов в два раза. Разумеется, L и t должны быть выражены в одних и тех же единицах.

Во втором уравнении речь идёт о складывании в различных, переменных, направлениях (но всё равно – вдвое каждый раз). Здесь W – ширина квадратного листа. Точное уравнение для складывания в «альтернативных» направлениях – более сложное, но здесь приводится форма, дающая очень близкий к реальности результат.




Для бумаги, которая не является квадратом, вышеупомянутое уравнение всё ещё даёт весьма точный предел. Если бумага, скажем, имеет пропорции 2 к 1 (по длине и ширине), легко сообразить, что нужно сложить её один раз и «привести» к квадрату двойной толщины, а затем воспользоваться вышеупомянутой формулой, мысленно держа в уме одно лишнее складывание.

В своей работе школьница определила строгие правила двойного сложения. Например, у листа, который свёрнут n раз, 2n уникальных слоёв обязаны лежать подряд на одной линии. Секции листа, не удовлетворяющие этому критерию, не могут считаться как часть свёрнутой пачки.

Так вот Бритни и стала первым в мире человеком, сложившим лист бумаги вдвое 9, 10, 11 и 12 раз. Можно сказать, не без помощи математики.





А в 2007 году команда "Разрушителей легенд" решила сложить огромный лист, размером с половину футбольного поля. В итоге они смогли сложить такой лист 8 раз без специальных средств и 11 раз с применением катка и погрузчика.

И еще любопытное:




[источники]
источники
http://www.membrana.ru/particle/2335



Subscribe to  masterok

Posts from This Journal by “Интересно” Tag

  • Где в России можно найти казино

    Кто то помнит, а кто то нет, как во всех городах России стояли столбики-автоматы, в которые можно было закинуть денежку. Так же, практически в…

  • Зачем еноты ползают по стенам?

    Только недавно всем миром наблюдали, как енот полз по стене небоскреба. И удивительно даже не то, как он ползет по отвесной стене, а зачем он туда…

  • Тайные языки мира

    Вот только только мы обсуждали Ах, этот РУССКИЙ …, а теперь вот секретные языки мира! В свое время люди придумали язык, чтобы общаться.…

promo masterok январь 2, 12:00 46
Buy for 300 tokens
Вот так выглядит ушедший от нас 2017 год. А вот кстати, начало 2018 года показывает еще больший трафик, чем декабрь 2017: И вот один из дней - рекордсменов за всю историю журнала тоже уже в 2018 году: Красная цифра - это общее количество уникальных посетителей попавших в блог. В…

Comments

( 9 comments — Leave a comment )
dashka_jj
Feb. 20th, 2018 09:04 am (UTC)
слоёные печеньки, они рекламируют печеньки из слоёного теста... ща

была у меня мысль про эти цифры римские написать, но выбесили только на комментарий
sinyaya_tigra
Feb. 20th, 2018 10:50 am (UTC)
Мне про это рассказал дедушка еще в детстве. И я ходила с большой газетой "Известия" и на всякие ништяки спорила с другими детьми на то, что они не смогут сложить "эту большую газету" больше 7 раз) Проиграли все)
masterok
Feb. 20th, 2018 10:53 am (UTC)
да это старая байка, ага. Но там есть доля истины :-)
Мистер водопроводчик
Feb. 20th, 2018 12:08 pm (UTC)
12 раз сложили не бумагу, а фольгу. Максимум 11 раз сложили в программе "Разрушители легенд" кальку размером с футбольное поле.
greygreengo
Feb. 20th, 2018 01:34 pm (UTC)
Нагни бобра - согни дерево!
koldoblin
Feb. 20th, 2018 03:27 pm (UTC)
Девушка не поняла задачи и складывала только поперёк. Любому же дураку поятно, что нужно складывать вдоль и поперёк по очереди. Чем "разрушители" и занимались. А там совсем другая "математика" не на уровне женских мозгов.
Ил ПБ
Feb. 20th, 2018 04:36 pm (UTC)
1. Изначально не было сказано, что сложение должно быть разнонаправлено. Именно это и позволило посрамить учителя. Девушка подошла к решению вопроса без стереотипов и победила.
2. После этого она разработала теорию для разнонаправленного складывания, посрамив заодно и вас.
3. Вы написали: "И дураку понятно что...". Осторожнее надо выражаться. Дураку понятно, а умной - нет. В этом и разница.
nepuc
Feb. 25th, 2018 05:09 am (UTC)
Странно, что британские учёные не исследовали этот вопрос.
aleks_jason
Mar. 11th, 2018 07:04 am (UTC)
сложил пакетик из магнита 10 раз

Edited at 2018-03-11 07:05 am (UTC)
( 9 comments — Leave a comment )

Profile

О нашем центре
Сеть EPILAS – это уникальные медицинские центры, предоставляющие косметологические услуги премиального уровня по самым низким ценам в Москве.

Современная аппаратная косметология с применением лучших лазеров из Германии позволяет неинвазивно добиваться невероятных, а главное стойких результатов в борьбе с нежелательными волосами на теле, разглаживанием морщин на лице, отбеливанием кожи в любой зоне и лечения акне.

masterok
Masterok (Валерий)
Хочу все знать

Latest Month

September 2018
S M T W T F S
      1
2345678
9101112131415
16171819202122
23242526272829
30      

Tags

Powered by LiveJournal.com